
Learning Word Vector
Representation in Multi-Task

Framework

A Project Report Submitted
in Partial Fulfillment of Requirements

for the Degree of

Bachelor of Technology

by
Vishal Anand

11010170

under the guidance of
Dr. Ashish Anand

Department of Computer Science and Engineering
Indian Institute of Technology Guwahati

Guwahati 781039, Assam, India

Abstract

Medical textual data present us with huge volumes of useful raw data, which
can be pre-processed with the use of proper learning techniques. The infor-
mation that is generated using the techniques can be leveraged to extract
knowledge and predict varied medical correlations and conditions. Some ex-
amples of the predictions can include deciding the course of a given person’s
condition in the context of the related data from the medical corpus, the
correlation of varied diseases with each other, among others.

To generate these analytical data, we have utilized the corpus of textual
medical data to train artificial neural networks(ANNs). The ANNs have
been loaded with the words from the corpus in an unsupervised fashion to
train itself. The method employed utilizes the concepts of backpropagation
using hidden layers. With the word vector representation generated, it can
be used in varied tasks such as Parts-of-Speech tagging, Chunking, Named
Entity Recognition, Semantic Role Labelling in a corpus’ data. In this part
of the thesis, I have focussed on the window-based model to analyze and
generate the word-vector representation so as to extend it to a multi-task
framework once the vectors have been trained.

i

Acknowledgements

I take this opportunity to express a deep sense of gratitude towards my guide
Dr. Ashish Anand, for providing excellent guidance, encouragement and
inspiration throughout the project work. Without his invaluable guidance,
this work would never have been a successful one. I would also like to thank
Muneeb T H and Sunil Kumar Sahu for their valuable suggestions and helpful
discussions.

Vishal Anand
Department of Computer Science and Engineering

Indian Institute of Technology Guwahati
Guwahati-781039, Assam, India

April 26, 2015

ii

Honor Code

I certify that I have properly cited any material taken from other sources
and have obtained permission for any copyrighted material included in this
report. I take full responsibility for any code submitted as part of this project
and the contents of this report.

Vishal Anand

iii

Certificate

It is certified that the B. Tech. project “Learning Word Vector Representa-
tion in Multi-Task Framework" has been done by the student: Vishal Anand
under my supervision. This report has been submitted towards partial ful-
fillment of B. Tech. degree requirements.

Dr. Ashish Anand
Faculty Supervisor

Department of Computer Science and Engineering
Indian Institute of Technology Guwahati

Guwahati-781039, Assam, India

iv

Contents

Abstract i

Acknowledgements ii

Honor Code iii

Certificate iv

1 Introduction 1
1.1 Medical Textual Data Learning 1

1.1.1 Motivation . 1
1.2 Neural Networks . 2

1.2.1 Representation of Neural Networks 2
1.2.2 Window-Based Neural Networks 3
1.2.3 Forward Propagation 4
1.2.4 Backpropagation . 4

1.3 Organization of the Report . 6

2 Natural Language Processing 7
2.1 Tasks . 7

2.1.1 Part of Speech Tagging 7
2.1.2 Chunking . 8
2.1.3 Named Entity Recognition 8
2.1.4 Semantic Role Labelling 8

3 NER Implementation 9
3.1 Introduction . 9

3.1.1 Equations derivations 9

4 Word Vector construction 12
4.1 Introduction . 12
4.2 Data Collection . 12

v

4.3 Data issues and configuration 13
4.4 Experimental Setup . 13

4.4.1 Motivation for the setup 13
4.4.2 Input to the system . 14
4.4.3 Weight initialization 16
4.4.4 Word Vocabulary building 16
4.4.5 Word Vector Initialization 16
4.4.6 Word Vector Processing 17
4.4.7 Input File Iteration . 20

5 Implementation and Visualization Issues 22
5.1 Introduction . 22
5.2 Implementation Issues . 22

5.2.1 Activation Function . 22
5.2.2 Out of Bounds Error 24
5.2.3 Time for Training . 24

5.3 Visualization Issues . 24

6 Visualization of Word Vectors 26
6.1 Introduction . 26
6.2 Word2Vec . 27
6.3 Glove . 27
6.4 In-house approach for Sliding Window Neural Network 28

7 Integration into Software Suite 29
7.1 Introduction . 29
7.2 Root Window . 29
7.3 In-house Collobert’s Neural Network Approach 30
7.4 Word2Vec . 31
7.5 Glove Word Vector Approach 31
7.6 Other Features . 32
7.7 Comments on the In-house Neural Network integration 32

Bibliography i

vi

Chapter 1

Introduction

1.1 Medical Textual Data Learning
When presented with a corpus of textual medical data, we can apply learning
techniques to deduce relations and then try to predict relationship of the
entities(features defined) which includes the subject’s future condition, varied
diseases, medicines and effects among others.

1.1.1 Motivation

To solve this problem people have used varied robust techniques wherein the
features have been carefully defined and have used clustering methods among
others to get satisfying results. But in the recent past, the focus has shifted
to the use of neural networks employing the window based unsupervised
training approach which has shown phenomenal results and has broken the
benchmarks of many of the tasks in question. This approach has been used
by Collobert et al.(2011) [1] and Huang et al.(2012)[2].

The visualization of the motivation of using a neural network is intuitive
and corresponds to the development of a human brain. Going by an exam-
ple, the motivation would be lucid. Let us imagine a person having general
interests in a genre of movies and in some genres of music. When this person
is presented with a new music or a new movie, which has not been previously
classified into the correct genre, the person would either like it, dislike it or
remain lukewarm to it. If the correct classification was in the subset of the
taste of the person, the chances are very high the new product would be
appreciated by the person.

If we try to map this to a neural network, we can assume the taste of
the person as a trained neural network, with the datapoints for the training
as the past movies and music that the person was exposed to in the past.

1

The new movie/music can be thought of as the new data point which has
to be analysed and converted into knowledge for useful applications in the
medicinal field. Thus, the neural network develops a sense of logic for teh
new data points and an analogy can be drawn to the human brain the way
the neural network is trained.

In the works of Collobert et al., on experimentation with the window
based approach of training of the neural network, the results were phenome-
nal and had broken all benchmarks in this domain. Thus, I have investigated
in this domain and have tried to study this field.

1.2 Neural Networks
The artificial neural network (ANN) is a system of logic and data structures
that emulates the functioning of the human brain. A usual implementation of
neural network involves the use of a large number of parallel processors, each
comprising of a separate set of knowledge and data-trained weights. Initially
a neural network is "trained" and fed large amounts of data and rules about
data relationships (for example, "The sun rises in the east"). After the initial
training, the logic of the ANN can then respond to an external stimuli(may or
may not be textual data), and can even initiate interaction with the outside
world(which can be the user of the system as well).

1.2.1 Representation of Neural Networks

x2 w2 Σ f

Activate
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 1.1: Neuron Representation

2

Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Input 4

Input 5

Ouput

Figure 1.2: Neural Network with the hidden layers

1.2.2 Window-Based Neural Networks

In the window based neural networks approach, the only input we have is a
corpus of data. From this we generate the positive and the negative samples
for training of the neural networks by replacing the word vectors of a se-
lected window. For the positive sampling, we generate the inputs by taking
the word vector corresponding to the window-sized number of words from the
corpus in an iterative order, of which the score produced by the neural net-
work is evaluated. The centre-most word of the window is then replaced with
an arbitrary word to create an instance of negative sample. The process of
training for the specific central word of the window is continued for the ran-
dom words in the corpus, till we get the condition Scorecorrect-Scorerandom>1.
Post this, the next random word is taken from the corpus and the process is
repeated, for all the windows from the training corpus.

This method has been used by Collobert et al. and has been shown to
break the existing benchmarks and this model is very adaptive to change.
Going by an example : we can visualize a problem that, if we are given a
set of words with the centre-most word missing/corrupted and we have to
identify the correct word. The training for the window based model would
imply passing on the window to the neural network without the centre-most
word(the centre-most word’s input would correspond to zero). In this fash-

3

ion the score would be calculated; and thus when finally presented with a
test data with incomplete points, we would pass this incomplete set of words
and the score generated would correspond to the absent/incorrect word, thus
identifying the word. The model can be easily extended to many other ex-
amples with slight changes to the existing framework. Hence I have taken to
studying this approach in the thesis.

1.2.3 Forward Propagation

For a sentence from the corpus: "This is a sample sentence", and the window
of size 5, each of the corresponding word vectors being represented by xword,
we have the following input to the neural network :

x = [xthis xis xa xsample xsentence]

The equations for the single hidden layer is as follows :

z = Wx+ b (1.1)
a = f(z) (1.2)

s(x) = UTa (1.3)
⇒ s(x) = UTf(Wx+ b) (1.4)

J = max(0, 1− s(x) + s(xe)) (1.5)

The equation 1.4 is called as the feed-forward process of the neutral network,
and the equation 1.5 is the objective function that is minimized for each
window. As this is a continuous function, we can use stochastic gradient
descent for neural network training.

1.2.4 Backpropagation

Using this algorithm, we follow the inverse direction of the forward prop-
agation and calculate the derivatives of the activation values at each level,
which is then used to update the weights and vectors of the window in con-
text. This approach has been used traditionally by Bryson et al.,1963 [3];
Werbos,1974[4] and Altman et al.,1994[5].

∂S

∂U
=

∂

∂U
UTa = a (1.6)

∂S

∂W
=

∂

∂W
UTa =

∂

∂W
UTf(z) =

∂

∂W
UTf(Wx+ b) (1.7)

4

∂

∂Wij

UTa =
∂

∂Wij

Uiai

= Ui
∂

∂Wij

ai

= Ui
∂ai
∂zi

∂zi
∂Wij

= Ui
∂f(zi)

∂zi

∂zi
∂Wij

= Uif
′(zi)

∂zi
∂Wij

= Uif
′(zi)

∂Wix+ bi
∂Wij

= Uif
′(zi)

∂

∂Wij

∑
k

Wikxk

= Uif
′(zi)︸ ︷︷ ︸
δi

xi

= δixi

⇒ ∂

∂Wij

UTa = δixi

∂J

∂Wij

= Uif
′(zi)xj = δixj

⇒ ∂J

∂W
= δxT

Ui
∂

∂bi
ai = Uif

′(zi)
δWixi + bi

δbi
xj

= δi

⇒ UTa = δ

5

∂S

∂xj
=

∑
i

δS

δai

δai
δxj

=
∑
i

δUTa

δai

δai
δxj

=
∑
i

Ui
δf(Wix+ b)

δxj

=
∑
i

Uif
′(Wix+ b)

δWix

δxj

=
∑
i

δiWij

1.3 Organization of the Report
The next section describes the way a section of the project (NER) has been
dealt with and the ensuing chapter gives a timeline of the work that is to
be extended from the current version to generate a multi-task framework for
the neural network for textual medical data.

6

Chapter 2

Natural Language Processing

2.1 Tasks
In this section, a brief introduction of four of the standard NLP tasks on
which the neural network is to be used for building the word vectors is pre-
sented: Part-Of-Speech tagging (POS), chunking (CHUNK), Named Entity
Recognition (NER) and Semantic Role Labeling (SRL). For each of them,
we consider a standard experimental setup and give an overview of state-of-
the-art systems on this setup.

2.1.1 Part of Speech Tagging

Part of Speech tagging labels the words of a sentence into the corresponding
literal mapping into their corresponding part of speech, viz. nouns, ad-
jectives, verbs, adverbs, etc. In this fashion, the words of the corpus are
segregated in lines with their syntactical role in the sentence. This involves
a multitude of pre-processing such as segmentation, extraction of the stop-
words, segregation of the more popular roots of the vocabulary for the tagging
purposes to deal with the overheads involved in training for the relatively in-
significant words. The use of the POS tagging with the afore-mentioned
preprocessing tasks depends on the kind of learning and knowledge extrac-
tion required for a particular event. Among the best of the POS classifiers,
these are based on classifiers using window-text based training, which then
"use bidirectional decoding algorithms during inference" [1]. In general the
approaches change the numbers to ’DGDD’ named tag as the essence of the
word remains the same for the POS tagging.

7

2.1.2 Chunking

In some literature, this is termed as shallow parsing. This task marks the
parts of sentences with labels of noun-phrases and verb-phrases. Each word
is assigned a single unique tag, generally encoded as a begin-chunk or inside-
chunk tag. The benchmark driving systems use features composed of words,
POS tags, among other features.

2.1.3 Named Entity Recognition

Named Entity Recognition(NER) tagging refers to the action of labelling and
classification of words into pre-defined classes or categories, for example into
Person/Non-Person, Location/Non-Location, Quantity/Non-qunatity among
others. In this part of the thesis, I have worked in the NER tagging domain,
which is described in the next chapter.

2.1.4 Semantic Role Labelling

The Semantic role labeling is sometimes referred to as shallow semantic pars-
ing. The role of the Semantic Role Labelling(SRL) is to detect the semantic
arguments associated with the predicate or verb of a sentence and their clas-
sification into their specific roles. Taking an example, we can try to label
the words as the doer, the recipient, the object of the sentence and the ac-
tion in relation to a sentence in question. This would relate to finding the
proper meaning of a given sentence. The semantic representation resides at
a higher-level of abstraction than a syntax tree. The reason for this is that
even if the voice of the sentence changes, the syntactical tree would change,
but the semantic role’s tree would remain the same. In the wikipedia this
has been brought to light with a very good example [6].

8

Chapter 3

NER Implementation

3.1 Introduction
In the current semester, I have taken a fragment of the multi-task framework
and implemented the NER module of the word-vector training, which can
then be generalized to the other tasks and then ultimately merged into a
common representation of the multi-task framework. Based on the window
based approach described in the section 1.2.2, at the hidden layer, I have
used the hyperbolic tangent function, and at the output layer, the softmax
function used for the two layered decision is sigmoid function.

3.1.1 Equations derivations

For the model of neural network I have trained, the window of the word-
size used is 5, where each of the words has 50 sized word vectors. The
size of the hidden layer is 50 nodes. After including the bias, the input
to the neural network each node is 251((5*50) + 1) and we find the score
in the forward direction using the equations from the following subsection.
Once the scores are calculated, we find the backward propagation equations
for each of the nodes. The NER tagging feature implemented is that for a
PERSON/NON_PERSON. The PERSON tag has a score of 1 and the tag of
NON-PERSON has a tag value of 0. The training set comprises of a textual
data-set which has pre-tagged values for the feature and the same is used
for the error function (viz. the difference between the output layer’s score
versus the actual value for the central word of a context window, described
in the equations). The activation values at the hidden layer are fed into the
hyperbolic tangent function (f(x)) and the activation value at the output
layer is fed into the sigmoid function (g(x)) which returns the score value for
the central word of the context window in the range [0,1].

9

In the following derivations, I have used a toy example of the window size
to be comprised of three words, each of which has the word vector matrix
of 3X1; and the number of size of the hidden layer to be comprised of three
nodes. The output layer comprises of a single node. With the final results
coming in the form of a set of matrix equations, the same would be generalized
for any configuration of compatible neural network which has a single hidden
layer.

Forward Propagation

Letx ∈ <3, A ∈ <3hθ ∈ <1

Z1
j = wj1x1 + wj2x2 + wj3x3 + b1j

Z1 =

w11x1 + w12x2 + w13x3
w21x1 + w22x2 + w23x3
w31x1 + w32x2 + w33x3

+

b11b12
b13

Z1 =

w11 w12 w13

w21 w22 w23

w31 w32 w33

x1x2
x3

+

b11b12
b13

= WX + b1

The first layer’s calculations are done

a2j = f(Z1
j)

A =

a1a2
a3

=

f(Z1)
f(Z2)
f(Z3)

= f(Z1)

Z2 = u11a1 + u12a2 + u13a3 + b2

=
[
u11 u12 u13

] a1a2
a3

+ b2

= UTA+ b2

hw(x) = g(UTA+ b2)

= g(Z2)

10

Backward-Propagation

Error =
1

2
(y − hw(x))2

Updateofu1i

∂Error

∂u1i
= (y − hw(x))

∂hw(x)

∂u1i

= (y − hw(x))
∂g(Z2)

∂u1i

= (y − hw(x))g′(Z2)
∂Z2

∂u1i
= (y − hw(x))g′(Z2)ai

Let δ11 = (y − hw(x))g′(x2)
∂Error

∂u
= A(y − hw(x))g′(Z2)

= Aδ11
∂Error

∂b2
= δ11

∂Error

∂b1j
= δ2j

δ2j = δ11u1jf
′(aj)

δError

∂wji
= δ2XT

δError

∂xi
= wT δ2

Stochastic Gradient Descent

With the error derivatives calculated for the θ parameters, one can update
the parameters using the equation :

θ = θ − α∂Error
∂θ

Here, the α’s value is decided by the user, and is generally set to 0.001 for
training of the neural network.This is the Stochastic gradient descent which
is used for updating the values of the parameters of the neural network and
the word vectors as well.

11

Chapter 4

Word Vector construction

4.1 Introduction
The Artificial Neural Network on which I have used the NER implemntation
depended on the mapping of each of the words to a n-sized word vector.
The vectors were obtained from the training of the entire Wikipedia text
and was trained on the complete Wikipedia corpus and was obtained from
Richard SocherâĂŹs implementation which had been run on parallel GPUs.
The particular word-vector sample was sized at 50 each feature points. Since,
the objective of the thesis is to learn word-vector representation in a multi-
task framework using neural networks, the corpus I had to train the neural
network had to be a medical textual corpus.

4.2 Data Collection
I obtained a set of Medical Publications (referred to as PubMed henceforth),
and selected a 424 MB data-sample from it and it comprised of a total of
152,413 research papers. Writing python and bash scripts, I extracted these
into PubMed Extract which comprised of just the abstracts of the papers,
so as to train on the essence of the paper, rather than get the complete
data. Once the abstract training is done, the motive would be to train
it on the complete data, which however is expected to get similar results,
since the abstracts are written in such a fashion to mirror the content of the
paper. Hence, I wrote python and bash scripts to extract the abstracts of the
PubMed papers. The data now amounted to a 250 MB file which comprised
of all the abstracts stored in a single line.

12

4.3 Data issues and configuration
The primary objective to train the Neural Network using a manageable chunk
of data has been done. However, the data set could not be visualized, and
the text editors and related terminal-shell based tools would keep on crashing
while seeing the text for checking the validity of the data-conversion.

A small tweak solved the issue, which involved saving the PubMed ab-
stract in a structure wherein each line corresponds to each of the research
paper’s abstract. The reason why this tweak worked was that the entire line
from the data file was being loaded into the RAM and since the entire file
could not fit into the available space, the SWAP page frames were getting
created, which was causing the operations to get slowed down terribly and
was the main cause to crash the text operations.

Logically this seemed more relevant since, while training for the word
vectors’ the sliging-window vector would traverse through a set of words in
the document fed into the neural network. So, when a particular abstract
ends, the next abstract would be non-related to the previous abstract one,
and hence they should be padded with START-OF-DOCUMENT and END-
OF-DOCUMENT respectively so as to make the division across the different
abstracts visible to the neural network.

4.4 Experimental Setup
I started with an in-house development of the neural network targeted to-
wards to the Collobert’s window-based neural network approach for word-
vector training method.

The in-house development setup was initiated with a base which can en-
able easy expansion into various methods of training of word vectors, and
even for activities such as usage of the vectors to evaluate incomplete sen-
tences, to come up with the missing word in a given sentence.

4.4.1 Motivation for the setup

An example for the expansion of the in-house setup can be visualized in this
fashion:

We get a data-set which has to be tested for its correctness. We
can initialize the neural network with the trained values from a re-
lated corpus done in accordance with a pre-defined size of window.
Thus, with the trained word-vector mapping of the words and

13

weights assigned to the layer of the neural network, the centre-
most word of the window is deleted and passed through the neural
network. The network tries to assign a vector from its dictionary
and evaluates the score of the window. If the score comes out
to be true, the vector is reverse mapped with the words in the
dictionary and compared with the given middle-word.

As an extension to this problem. One can try to predict the
ensuing stages of a patient’s health. One can try to find the
future state of a patient based on some medication suggested by
the professional. To get to this state, we can actually have no
middle-word. In such an extension of the neural network, the
training would be carried out in the context of the last word
in the window, in place of the centre-most word. Then, with
a given window, the following stage(or medication) of a given
patient would be evaluated and can be used as an indication of
the effectiveness of a given drug in the prior stage.

4.4.2 Input to the system

In order to make the neural network very much extensible and adaptive,
I made the network independent of any set of rules. As in, the input of
the system would just be a text file along which the entire network is to be
trained. Thus, all the system cares about is the input which is then processed
and made compatible with the training of the neural network.

The user has the option to specify the

• deep neural network size [=50]

• window-size [=5]

• word-vector size [=50]

• iteration-count upper limit [=5000]

• epsilon value [=0.001]

• input file [= in.txt]

• vocabulary log file [= build_vocab.txt]

• vocabulary log with frequencies [= build_vocab_count.txt]

• vector output [= word_vector_output.txt]

14

• upper case allowance [=True]

• verbosity [=True]

• arguments [=True]

Each of these options is optional, even if the user does not enter an input file,
"in.txt" is used as a default file for training of the neural network. However,
if the input file is specified by the user, the rest of the parameters are set to
a default value by the system.

The deep neural network size refers to the number of nodes in the hidden
layer of the Artificial Neural Network system.
The window size refers to the parameter of sliding window which is used
while training for the Collobert’s approach.
The word-vector size refers to the dimensionality of each of the word vector
to be generated.
The iteration-count upper limit refers to the maximum number of iterations
the system would try to train the network in case the weights and vectors do
not converge by these pre-defined set of repetitions of back-propagations.
The epsilon-value refers to the coefficient of the back-propagation update
value to be used while updating the weights and word-vectors.
The input file simply refers to the file that is to be utilized for the training
of the neural network.
The vocabulary log file parameter refers to the log file’s name to be generated
while processing the input file.
The vocabulary log file with frequencies refers to the verbose log fileâĂŹs
name to be generated while processing the input file, which would also com-
prise of the repetitions of the given word in the corpus file used for training
of the network.
The vector output takes in the file in which the final set of word vectors is
to be written into.
The upper case allowance takes in a boolean value which signifies if the corpus
has to be treated as a cluster of upper and lower case characters, or only a
single case set.
The verbosity refers to the verbose outputs for debugging and related pur-
poses in order to get to speed with the working of the entire system.
The arguments when set to true outputs the other arguments entered by the
user so as to double-check the sanctity and working of the training of the
neural network.

15

4.4.3 Weight initialization

The neural network is firstly initialized with random weights based on the
parameters fed into the system. Since it consists of two layers of weights,
one at the interface between the input words(W1) and the hidden layer and
finally the other one at the interface between the hidden layer and the output
layer(W2).

input_size = args.word_size× args.window_size
W_1 = np.random.randn(args.deep_neural, inputsize+ 1)× .001
W_2 = np.random.randn(1, args.deep_neural + 1)× .001

Once the weights have been initialized I store it into a model variable,
which is to be updated as the training proceeds in the later stages.

4.4.4 Word Vocabulary building

The input file on which the neural network is to be trained is read line by
line and they are stripped into tokens.
If the user specifies that the upper case has to be left as it is, we ignore
changing and modifying the cases, or else the complete set of words are
treated as the same and the vocabulary is then stored in variables.

However, if we follow the Collobert’s approach of sliding-window ap-
proach, we realize that each of the abstracts or continuous textsâĂŹ has
to be padded so as to consider the beginning of each document as a positive
sample while training the network. Hence, I used a padding using the word
: "DGDD" at the beginning and at the end of each of the documents while
reading in the lines from the input file.

Thus a file which has the string S, then the variable S is prepended and
appended with ["DGDD"] those number of times such that the first word
and the last word can be made as the center of the window when the sliding
window encounters them.

The complete words are saved into a dictionary with their counts as well.
In case a wordâĂŹs count is lesser than the threshold specified by the user,
then the word is discarded by the system.

4.4.5 Word Vector Initialization

From the words’ dictionary populated in the previous step, each of the words
in the given threshold limit is initialized with a random set of vectors :

16

vec_init = [random.uniform(0, 2)for_inrange(0, args.word_size)]

For the dummy words added to the document, i.e. "DGDD", a unary vector
is initialized with each of these.
vec_dummy = [1]× args.word_size

For faster access of the words, the dictionary is saved in a sorted fashion
so as not to traverse through the entire set of words in the dictionary if
the threshold has been reached. This would bring down the computation
really well, since the words with lesser frequency are too many, and hence
the control of the program would know when to step out of the process of
word vector initialization.

During this process, the word vectors are also written into the given file
for the analysis by the user or for visualization purposes, as to know how
the word vectors got updated and to study how well the neural network has
been trained.

4.4.6 Word Vector Processing

In this section of the neural network training, the input file is read and each of
the abstract is sent to the a parser, which converts the whole set to a sliding
window format, which is what is actually required by the neural network.
This process is then iterated over and over again till the complete input file
has been handled and parsed. In case the words are encountered, which have
to be left out of the system (i.e. ones which have lesser frequency than the
threshold, they are replaced with the dummy variable as we are not worried
about optimizing the vector corresponding to the left-out word).

Sliding Window

Once the a particular document’s entire content is given to this segment, the
whole set of sentences is checked for proper padding by the dummy words
: "DGDD". And once basic checking of the input is done, the words are
clustered into sliding windows. As an example, let us consider :

"This is a sample sentence for neural network training using Col-
lobert’s approach"

This sentence is converted to (considering 3 window-sized pa-
rameter): "DGDD This is a sample sentence for neural network
training using Collobert’s approach DGDD".

17

In case the parameter of window-size is specified as 5, the same
sentence is converted to : "DGDD DGDD This is a sample sen-
tence for neural network training using CollobertâĂŹs approach
DGDD DGDD".
The sliding window parses the sentence to : ["DGDD DGDD
This is a", "DGDD This is a sample", "This is a sample sen-
tence", "is a sample sentence for", "a sample sentence for neu-
ral", "sample sentence for neural network", "sentence for neural
network training", "for neural network training using", "neural
network training using CollobertâĂŹs", "network training using
Collobert’s approach", "training using CollobertâĂŹs approach
DGDD", "using Collobert’s approach DGDD DGDD"]

[The above example considers the sliding-window size parameter to be of
length 5]

Mapping words and first layer

Once the sliding window has been created, the words fed into the neural net-
work is then mapped into their corresponding word-vectors initialized in the
previous sub-section. With the mapping produced, the complete word vector
of the window comes out to be "word-vector-size * window-size". However,
we add a bias entry(valued at 1) in the vector of the sliding window, so as
to account for the bias in the first layer of neural network. Thus the sliding
window is passed onto the first layer where it is forward propagated and the
output is stored as Z1 :

add_row = np.array([1])

add_row = add_row.reshape(1, 1)
X = np.vstack((add_row,X))

Z1 = W1.dot(X)

First layer and activation

After the first layer has been invoked, the output is then sent over to an
activation function so as to streamline the functioning of the training(as
has been decided by the programmer). Here A1 denotes the activated first
layerâĂŹs output value. I was using a sigmoid function for the first layer
initially. A detailed analysis is to be followed in a later section.

A1 = sigmoid(Z1)

18

Second and Final Layer

After getting the first layerâĂŹs activated value, the bias is again added
for the second layer and is used for evaluation of the input for the second
layer’s activation function. In the activation function, I have used the identity
function.

A1 = np.concatenate((np.array([[1]]), A1), 0)

Z2 = W2.dot(A1)

Negative Sample Generation

Once the sliding window is evaluated to some value, the middle word is
replaced with a random word and is then used as a negative sample to form
as a guidance for the neural network so as to drive its weight into the correct
direction. This can be understood in this fashion : If the correct word is
replaced by a random word, then the trained neural network should be able
to point out to the person that the word introduced is incorrect, hence the
system then evaluates the score for the incorrect word and tries to drive the
weight of the network and the vectors of the words as well, such that the
following property holds :

”Score(correct) >= Score(incorrect) + 1”

Backward Propagation

The replacement of the centre-most word is carried out in such a fashion
that each of the admissible word in the vocabulary is substituted and then
evaluated for the forward propagation and the corresponding error is then
evaluated and is used for backward propagation :

margin = 1

dZ2 = np.zeros_like(Z2)
dZ2[0][0] = error_value

dW2 = dZ2.dot(A1.T)

dA1 = np.dot(W2.T, dZ2)

dA1 = dA1[1 :]

dZ1 = dsigmoid(Z1)× dA1

19

dW1 = dZ1.dot(X.T)

dx = np.dot(W1.T, dZ1)

dx = dx[1 :]

Care is taken to remove the bias values while back-propagating to cor-
rectly evaluate the update variables. We finally only need the following values
for updates :

• dW1

• dW2

• dx

Update Of The Vectors and Weights

The word vectors and the weights corresponding to the layers of the neural
network are updated in the following fashion :

W1 = W1 + dW1

W2 = W2 + dW2

X = X + dx

The final statement is actually dealt with care, since it consist of various
words that have to be updated in the complete sliding window.

Iteration Control

The entire document’s contents are iterated over once for the sliding win-
dows generated and the control goes back to the input file, when the next
document’s text is read and parsed again.

4.4.7 Input File Iteration

Once, the document that is parsed is sent over to the word-vector-processing
unit, the input file’s next line is read and parsed, which is then processed.
Once the entire input file has been processed once, the total error value en-
countered is added up and compared with a threshold. If the threshold is
crossed, then the entire input file is re-read and re-processed on the updated
weights and corresponding updated word-vectors. This process goes on again

20

and again either till the threshold value is more than the error value encoun-
tered in the previous iteration, or till the number of iteration of the input
file specified by the user has been exhausted.

Printing the vectors and weights

This section of the system logs all the weights and word-vectors that has
been arrived at. This is exported into csv formats and text formats for ease
of reuse in terms of scripting usage(text format) and also for excel viewing
(csv format)

21

Chapter 5

Implementation and Visualization
Issues

5.1 Introduction
While developing and analyzing the flexible Neural Network Framework for
training the network and the word-vectors a multitude of errors cropped up
unexpectedly and it was quite an effort to whisk away the problems and
continue forward.

In the following sections, I would point out some of the major problems
that had cropped up during the process of design, development and analysis
of the working system.

5.2 Implementation Issues
While creating the raw framework for the neural network training, some of
the major issues faced are :

5.2.1 Activation Function

While deciding upon the activation function in the neural network, it was
not very clear how to go about fixating a particular function. A multitude of
references pointed at the usage of the sigmoid function at the hidden layer for
the training of the word-vectors, however it was not very much obvious as to
what the input to the function would correspond to. If the value comes out to
be >=10, the sigmoid function maps it to 1.000. It was observed that for the
correct sliding window and for the incorrect sliding window as well, the input
to the activation function would almost always correspond to >=10 and the

22

sigmoid would always map it to 1.000 for each of the rows. The final layer
after processing would then result in the same values for both the correct
and incorrect sequences. Thus, the system was insensitive to detecting the
correctness (and error) of the sliding sequences. It may also be noted that
the above actions can be acceptable during training of the neural network;
however the training would not make any progress, since the system would
always come up with the same output score for all the sequences. Thus, the
back-propagation never actually worked.

To deal with this issue, I changed the way the weights were initialized.
Firstly, the weights of the layers were getting randomly initialized from float-
ing point values in the range of (1-10), this was changed to floating point
values in the range of (0-1). It also did not yield any result.

The next thought of meddling with the initialization of the word-vectors
came up, but it would be wrong to play around with the vector initialization,
since after the optimization is done bny the system, the vectors can practi-
cally range to any real value. So, a limited starting point would not make
sense.

Since most of the times, the score of the hidden layer produced a score of
>=10 (though even a score of >=2 would have been unacceptable, since the
sigmoid would produce 1.000 score after the activation function gets invoked
for the sliding windows), I tried normalizing the rows of the first layer such
that each row corresponds to a unit vector and thus chances would be better
of having a smaller score at the input of the activation function. This also
failed, and it was also observed that with a far lesser magnitude of the row
vectors, the sigmoid function would still spit out unit outputs corresponding
to each row (i.e. corresponding to each word).

This led to the decision of removing the sigmoid function as the activation
function and replacing it with the identity function. Since here we were only
concerned with the differentiation of the correct sequence with the incorrect
sequence, the sigmoid function was not serving any purpose to this cause. It
also brought out the realization that the sigmoid functions are generally used
in cases which involves the multi-class classification of the output since they
involve multi-layered outputs and the pre-tagged labels guides the training
of the vectors. However in our case, we were producing the the negative
samples by replacement and the system was unable to correctly deduce the
samples. The system seemed to work fine. But there cropped up another
issue.

23

5.2.2 Out of Bounds Error

Once the sigmoid function was removed, the error value calculation was done
smoothly and the back-propagation seemed to work fine. However, the dif-
ferentials that were being evaluation started getting inflated really really fast
and would balloon up to 1022 and even 10100, after which it would get stored
as +∞, or at times it would deteriorate into −∞ (in case the direction would
turn out to be negative). Installing some sort of step function seemed ap-
propriate, but the previous episode with the sigmoid function was acting as
a deterrent to this thought.

It was then decided to come up with a error scaling function, which
would determine how fast the error is ballooning and would dampen the back-
propagation. Ideally it should have driven the weights in the correct direction
fast, but in this process, the optimization of the weights that is being achieved
would be overshot and then the system would start oscillating in the form
of a banana function optimization. Thus a steady drive towards the solution
seemed the best way to go about it. In case the back-propagation values
were above a certain threshold, the magnitude of the values were reduced to
103 and the back-propagation was carried. This ensured the whole system
moved gracefully and would hopefully come to a solution fast, rather than
oscillate (not to mention resolving the out of bounds error)

5.2.3 Time for Training

The approach taken in the training of the Neural Network originally involved
the use of parallel GPUs and corpus being the complete set of Wikipedia data,
took a very large computing timing. When the first run of the system was
done (when the activation error was found), it had taken 90 hours with only
3 iterations of the complete input file, thus it averaged a total of 30 hours for
each of the iterations of a portion of the PubMed extract. Another factor to
be kept into consideration is that the server (having 32 GB RAM) on which
the system was executed, had varied processes running alongside this job
process and hence it had to wait a long while, thus the actual time would be
a great deal shorter than the 90 hours recorded. Thus, it has to be converted
to a parallel computing approach so as to get acceptable training time.

5.3 Visualization Issues
In order to compare the word-vectors generated by the Collobert’s approach
and by other approaches, I looked at various visualization techniques, but
since it was a set of multi-dimensional vector, most of the forums and data

24

platforms suggested the use of tSNE visualization technique which has Prin-
cipal Component Analysis(PCA) at the heart of itself.

However, when the data to be analyzed was looked at closely, it was ob-
served that the vectors were generated for 5.45 lakh words and corresponding
to 50 vectors per word, the file generated corresponded to 260 MB, and when
it corresponded to 200 vectors per word, the file size amounted to 1.1 GB.
When these were set as inputs to the tSNE platform, the PCA would crash
while tryiong to invert the matrix in one of its routines.

Looking for alternatives, I looked at other implementations of the tSNE
and looked at the excel format analysis of the same. In this, one had to simply
save the vectors clustered with the words in a csv or excel sheet and the same
would be taken up by the tSNE platform and a 2-dimensional graph would
be generated. For some reason the data was not getting converted to the
excel format. While trying Google Drives and related tools available openly,
the problem could still not be solved. It was then evident that a majority of
the tools do not allow for saving files >20 MB of data, hence the problem
was being faced. Also, it was evident after trying a lot of work-around that
the excel formats only save at most 65000 rows of data, and not more than
that. Hence the entire point of visualizing the data using excel formats was
defeated.

Matlab implementation of tSNE also failed(this would also crash at the
PCS matrix inversion procedure). Python, Matlab, and Java implementa-
tions also failed. A possible reason could be the RAM of the system it was
being run on (6 GB of RAM). Escalating the RAM of the system to 32 GB
also did not help, and the system would throw Out of Memory Error.

Finally it was decided to analyze only a select few words (i.e. few thou-
sand words only), such that the tSNE is able to reduce the dimensionality
of the word-vectors and a visual estimate of the closeness of the words is
obtained and visual evaluation of the word-vector producing technique is
achieved.

This approach yielded graphs for comparison(across various techniques)
as is mentioned in the next chapter.

25

Chapter 6

Visualization of Word Vectors

6.1 Introduction
I compared the word vectors produced using various techniques namely, Col-
lobert’s neural network in-house approach, word2vec approach and Glove
approach. For the word-vectors, I had selected a setting of 50 vectors corre-
sponding to each of the words and applied tSNE on these to get the following
graphs. The vectors were trained from the PubMed corpus.

From the following sections, we can see that the three visualizations are
widely varied. But to make an accurate estimate of what the vectors are
really signifying, they have to be tested and mapped to a tagged data-set.
The use of standard Natural Language Processing(NLP) unit testing such
as Parts-of-Speech(POS) tagging, Named Entity Recognition(NER) tagging
would give a accurate measure of how efficiently the word vectors have been
evaluated.

Each of the diagrams correspond to dimensionality reduction from 50
dimensional vectors to 2-dimensions using the tSNE approach by Laurens
van der Maaten’s approach[7]

26

6.2 Word2Vec

Figure 6.1: Word2vec’s[8] tSNE visualization[7] of 1000 most frequent words from
the PubMed corpus.

6.3 Glove

Figure 6.2: Glove’s[9] tSNE visualization[7] of 1000 most frequent words from the
PubMed corpus.

27

6.4 In-house approach for SlidingWindow Neu-
ral Network

Figure 6.3: In-house[10] tSNE visualization[7] of 1000 most frequent words from
the PubMed corpus

28

Chapter 7

Integration into Software Suite

7.1 Introduction
The Neural Network framework was embedded into the Clinical Data Ex-
traction Software Suite. Following this, the frameworks for Word2Vec and
Glove’s word-vector generation approaches were integrated as well.

7.2 Root Window

29

7.3 In-house Collobert’s Neural Network Ap-
proach

30

7.4 Word2Vec

7.5 Glove Word Vector Approach

31

7.6 Other Features
The clusters of the already existing features in the suite(de-identifier, stopword-
removal, stemmer, tokenizer, dictionary builder, pre-processor) are also shown
below for reference :

7.7 Comments on the In-house Neural Network
integration

It may be noted that the software suite has a cluster of features, but the Neu-
ral Network integrated into the system has no dependency with the existing
framework, the primary reason being that the complete Neural Network can
be completely configured in terms of the parameters alone and internally has
all the features of tokenizing, dictionary building, pre-processing, stemming,
stop-word-removal, etc. A set of other features can be easily added to the
Neural Network system. While adding additional features into the Suite may
be tedious, as it might involve taking and parsing input formats, however the
in-house Neural Network only has to be fed with the raw input file and if at all
the pre-processing has been done by another agent, the same can be supplied
into the system as parameters, so as to avoid the same preprocessing. Still,
since a majority of time is taken up by the iteration of the documents and
updating of the weights and word-vectors, the preprocessing is insignificant
in terms of overhead for the Neural Network.

If at all some pre-processing data has to be passed to the network, then

32

this should be in terms of the weights and mapping of the pre-evaluated
word-vectors, since this involves consumption of really huge amount of CPU
resources and time.

Adding on to it, the Neural Network can be integrated with other methods
of evaluating the word-vectors, such as considering the global context as well
apart from the local context of the sliding window, to name a few.

In terms of the way in which the integration of the code is carried out
in the Suite, a very elegant approach that was employed was invoking the
base code from a Java function, which was converted to a executable Jar
file. In the software suite, when the corresponding button was clicked, the
action event associated with it unzipped the jar file and after executing the
command, removed the extra log files that get generated, which is generally
used for the reasearch purposes and debugging, but is of little interest to the
person using the system. However, the parameters to the Neural Network
can be easily added to specify if the log files have to be left as it is, or only
the word-vectors have to be stored into the system after execution of the
programme.

33

Bibliography

[1] R. Collobert et al. Natural language processing (almost) from scratch.
J. mach. learn. res., 12:2493–2537, Nov. 2011. issn: 1532-4435. url:
http://dl.acm.org/citation.cfm?id=1953048.2078186.

[2] E. H. Huang et al. Improving word representations via global con-
text and multiple word prototypes. In Proceedings of the 50th annual
meeting of the association for computational linguistics: long papers
- volume 1. In ACL ’12. Association for Computational Linguistics,
Stroudsburg, PA, USA, 2012, pp. 873–882. url: http://dl.acm.org/
citation.cfm?id=2390524.2390645.

[3] A. E. Bryson et al. Optimal programming problems with inequality
constraints. Aiaa journal, 1(11):2544–2550, 1963.

[4] P. Werbos. Beyond regression: new tools for prediction and analysis in
the behavioral sciences, 1974.

[5] E. I. Altman et al. Corporate distress diagnosis: comparisons using lin-
ear discriminant analysis and neural networks (the italian experience).
Journal of banking & finance, 18(3):505–529, 1994.

[6] Wikipedia. Semantic role labeling — wikipedia, the free encyclope-
dia. 2014. url: http://en.wikipedia.org/w/index.php?title=
Semantic_role_labeling&oldid=632438139.

[7] L. v. d. Maaten et al. Visualizing high-dimensional data using t-sne,
2008.

[8] Google. Word2vec. 2013. url: https://code.google.com/archive/
p/word2vec/.

[9] J. Pennington et al. Glove: global vectors for word representation.
In Empirical methods in natural language processing (emnlp), 2014,
pp. 1532–1543. url: http://www.aclweb.org/anthology/D14-1162.

[10] V. Anand. Colobert’s approach on window based neural network. 2015.
url: http://github.com/vishalanand/Neural-Network/.

i

http://dl.acm.org/citation.cfm?id=1953048.2078186
http://dl.acm.org/citation.cfm?id=2390524.2390645
http://dl.acm.org/citation.cfm?id=2390524.2390645
http://en.wikipedia.org/w/index.php?title=Semantic_role_labeling&oldid=632438139
http://en.wikipedia.org/w/index.php?title=Semantic_role_labeling&oldid=632438139
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
http://www.aclweb.org/anthology/D14-1162
http://github.com/vishalanand/Neural-Network/

	Abstract
	Acknowledgements
	Honor Code
	Certificate
	Introduction
	Medical Textual Data Learning
	Motivation

	Neural Networks
	Representation of Neural Networks
	Window-Based Neural Networks
	Forward Propagation
	Backpropagation

	Organization of the Report

	Natural Language Processing
	Tasks
	Part of Speech Tagging
	Chunking
	Named Entity Recognition
	Semantic Role Labelling

	NER Implementation
	Introduction
	Equations derivations

	Word Vector construction
	Introduction
	Data Collection
	Data issues and configuration
	Experimental Setup
	Motivation for the setup
	Input to the system
	Weight initialization
	Word Vocabulary building
	Word Vector Initialization
	Word Vector Processing
	Input File Iteration

	Implementation and Visualization Issues
	Introduction
	Implementation Issues
	Activation Function
	Out of Bounds Error
	Time for Training

	Visualization Issues

	Visualization of Word Vectors
	Introduction
	Word2Vec
	Glove
	In-house approach for Sliding Window Neural Network

	Integration into Software Suite
	Introduction
	Root Window
	In-house Collobert's Neural Network Approach
	Word2Vec
	Glove Word Vector Approach
	Other Features
	Comments on the In-house Neural Network integration

	Bibliography

