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ABSTRACT
In the intricate problem of understanding long-form multi-modal
inputs, few key-aspects in scene-understanding and dialogue-and-
discourse are often overlooked. In this paper, we investigate two
such key-aspects for better semantic and relational understanding -
(i). head-object-tracking in addition to usual face-tracking, and (ii).
fusing scene-to-text representation with external common-sense
knowledge-base for effective mapping to sub-tasks of interest. The
usage of head-tracking especially helps with enriching sparse entity
mapping to inter-entity conversation interactions. These methods
are guided by natural language supervision on visual models, and
perform well for interaction and sentiment understanding tasks.
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1 INTRODUCTION
Long-form multi-modal reasoning is garnering increased atten-
tion [6] to better deduce evolving human-conversation understand-
ing across long duration [1, 2, 14, 20]. Recent works extend BERT
based architectures to process multi-modal inputs to learn joint
representations[11, 16, 17]. With large-scale self-supervised pre-
training, these benefit downstream vision-language tasks such as
video question answering, visual common sense reasoning using
few-shot learning. However, most of these focus on visual concepts
and their spatial relations [3, 9]. The transferable capability of these
models is seldom tested on tasks involving semantic relations under-
standing in long-form datasets, especially when dialogue-discourse
are limited by entity-tracking - which happens since people don’t
often face cameras in long-form multimodal datasets.

2 APPROACH
We investigate how to leverage large-scale language-image pre-
training for our objectives of long-form video understanding. We
discover that our framework of zero-shot transfer on image-text
models combined with multi-body tracking for entity localization
can generate accurate scene representations for fine-grained inter-
action and sentiment prediction. We discuss the key components
of our methodology in this section - first we identify and track
key persons throughout the scenes, then perform zero-shot predic-
tion with enriched prompts from scene-graphs, finally, we organize
and visualize scenes as a knowledge graph for multi-hop question
answering. Figure 1 summarizes the above approach.

2.1 Face Recognition and Multi-Body Tracking
Identifying scene-entities is a key aspect of long-form multimodal
understanding. Face-embeddings are computed fromfive facial land-
mark points: eye-left, eye-right, nose, mouth-left, & mouth-right
using additive angular margin-loss[8] to perform face-recognition.

There were significant challenges in mapping entities’ names
with their figures on frame - especially when they are facing away
from the camera, or when less than half of their faces are visible,
a very common scenario in movies. Therefore, substantial interac-
tions between entities were not mapped and had to be discarded.

We develop a novel approach for multi-entity tracking. Movies
are split intomultiple shots[15] andMask R-CNNobject detector[19]
extracts bounding boxes and masks for each person entities, per
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Figure 1: Schematic algorithmic flow

frame. Since a person’s movement on screen is continuous within
a shot, we infer each person’s moving bounding boxes. For every
overlap between face’s bounding boxes and a person object’s mask,
we add the face-name to that person’s voting pool and perform
majority voting. (Algorithm1 performed every 6 frames per shot). If
a person’s face is detected even once, they are tracked throughout
the shot. Figure2 illustrates a person whose back is to the camera
is still identified (unachievable with conventional face detectors).

Algorithm 1:Multi-Entity Tracking Algorithm
Data: frame, frameID, entityList
Result: updated entityList

1 boundingBoxes, maskList = detectron2.predict(frame);
2 faceBoxes, nameList = Arcface.predict(frame);
3 entityCenters = getLastCentersForAllEntities(entityList);
4 for box,mask in boundingBoxes,maskList do
5 center = getCenter(box);
6 correctName = nameList[overlapFaceIndex(mask, faceBoxes)];
7 correctEntity = getClosestEntity(center, entityCenters);
8 if correctEntity == None then
9 newEntity = createNewEntity();

10 newEntity.addLastCenter(center, frameID);
11 if correctName != None then
12 newEntity.addName(correctName);
13 end
14 entityList.append(newEntity);
15 else
16 correctEntity.addLastCenter(center, frameID);
17 if correctName != None then
18 correctEntity.addName(correctName);
19 end
20 end
21 end

2.2 Model
We leverage CLIP[13] model pre-trained on 400k image-text pairs
with a contrastive-loss and maps the image-text pairs to a common
embedding space useful for downstream vision-language tasks. It

Figure 2: Body-tracking: facing away, and towards camera

comprises of vision and text transformers that serve as the video-
frame and prompt encoders in our setting respectively.

(1) Generating Image-text pairs:We sample all I-frames as keyframes
from every shot to depict the scene. We design a simple
prompt to pair with the image: "A photo of a person {label}"
where label is the class categories of 116 interactions eg: ac-
cusing, asking provided in the dataset. Similarly the prompt
for emotion prediction is "A photo of a person feeling {la-
bel}". We also add object attributes and spatial relations in
the prompt to help ground the entities and steer the model
towards the interaction between the entities. We discuss
prompt engineering [5] in Section 4.

(2) Entity mapping and localization: After obtaining the pre-
dictions for the semantic attributes, we use the multi-body
tracking framework to obtain the source and target entity
between whom the interaction occurs in every key-frame.
Furthermore, for some shots with missing entities we use a
range of shots(+/- 1) to infer the entity within the shot i.e., if
an entity occurs in the previous and next shot they are most
likely to occur in the current shot too.

3 EXPERIMENTS
The model is pre-trained on images paired with natural language
text descriptions rather than class labels in traditional image clas-
sification tasks [7]. We attempt to enrich the prompt by adding
object attributes and spatial relations to describe the images.
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3.1 Scene-graph generation
The purpose of scene graphs generation is two-fold: (i). enrich the
knowledge graph for holistic scene understanding, and (ii). infuse
object relations to ground the scene-entities for prompt generation.

We adopt the Scene graph generation method[18] due to its per-
formance on Visual Genome[10], which extends Mask R-CNN[12]
to define relationship prediction. We sample frames from scenes
where two or more entities are co-located to generate scene-graphs.

For relationship prediction, we capture triplets per frame (entity1-
relation-entity2) - including entity-details (person, woman, etc.) and
related attributes (hand, mouth, etc.). This step captures relation-
ships between people-entities and surrounding objects in the frame.
We then map the person entities in the triplet with the related entity
name from the multi-body tracking using Cartesian distances be-
tween bounding boxes. Figure 3 shows object attributes & relations
along-with entity-name where ’man’ is mapped to ’Sniper’.

Figure 3: Scene-graph - Objects+attributes, Scene 17: Sophie

3.2 Prompt Enrichment and Entity Grounding
The traditional prompt only includes the names of two entities
and the interaction between them. In order to enhance prompts
in this experiment, we add a triplet generated from scene-graph
to the corresponding entity as a feature, which makes our prompt
template: "triplet1 - interaction - triplet2" where interaction is one
of 116 types from the dataset. 1.

When choosing ideal triplets, the first step is to filter out dupli-
cate triplets to ensure unambiguous entity references. We find that
triplets from the scene graphs contain a total of 28 relations ("wear-
ing", "behind", "holding", etc.). Among these relations, since "has"
and "and" contain the most ambiguous contextual information, we
delete all triplets including them. Also, the less frequently a rela-
tion occurs, the more unique the contextual meaning it expresses.
Therefore, we give different priorities to the remaining 26 relations
that the relation with lower frequency has higher priority. In this
way, triplet with the highest priority relation will be selected for
the prompt. For scene 17 in sophie in Figure 3 and Figure 4, the
triplets selected for "Robin" and "Sniper" are "using laptop" and
"looking at laptop", respectively. In this case, the prompt output is
["Robin using laptop {interaction_label} Sniper looking at laptop"]

1https://www-nlpir.nist.gov/projects/trecvid/dvu/dvu.development.dataset/

4 EVALUATION
4.1 Knowledge Graph Visualization
Each scene within a movie is represented by a knowledge graph
that aggregates and organizes information from these key sources:

• Localized Entities through body-tracking
• Scene graphs for visual+spatial relations between entities
• Fine-grained inference of interactions, sentiments, location
and emotions through image-language model

Figure 4 is the knowledge graph for Movie Sophie for Scene 17.
The knowledge graphs is used to query and retrieve information
effectively as discussed in later sections.

Figure 4: Scene-graphwith relationship, interaction, emotion,
location-prediction, and entity mapping; Scene 17: Sophie

4.2 Scene-Level Query and Answering
Six types of scene-level queries are used to evaluate our knowledge
understanding. The question queries and their answers are available
fromNIST 2 andwe follow their query guidance 3. The S1-S6 queries
are described below along with sample questions, along with our
detailed approach. The performances are shared in Table1 and 2.

For question S1 and S6, semantic similarity matrix quantifies
closeness between interactions or sentiments. Each word is embed-
ded using fastText [4] and we store cosine similarity for each pair
of words in a 2-dimensional matrix.

• S1: Given a full and inclusive set of interactions unique to a
specific scene in the movie, find which scene it is.
e.g. Question: Which unique scene contains the following in-
teractions: asks, talks to, thanks?
Approach: Calculate weighted similarity scores foreach
scene’s interactions-set and prompt’s interactions-set ac-
cording to interaction matrix as described in this section.
Return the scene with the arg-max value.

• S2: Given a scene in movie and a set of interaction:other-
person pair, find the correct person.
e.g. Question: Which person in scene 7 has the following
interactions: SourcePerson:Kelly’s husband talks to, SourcePer-
son:Kelly’s husband Comforts?
Approach: (1) Generate triplets <candidate, interaction, oth-
erEntity> according to the question’s prompt for each pos-
sible answer-candidate. (2) Return arg-max candidate with

2https://www-nlpir.nist.gov/projects/trecvid/dvu/dvu.development.dataset
3https://sites.google.com/view/dvuchallenge2022/home/datasets-queries

https://www-nlpir.nist.gov/projects/trecvid/dvu/dvu.development.dataset/
https://www-nlpir.nist.gov/projects/trecvid/dvu/dvu.development.dataset
https://sites.google.com/view/dvuchallenge2022/home/datasets-queries
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Movie S1-MRR S2-Acc S2-MRR S3-Acc S4-Acc S5-Acc S6-Acc

The_Big_Something 7.3 20.0 30.5 18.2 9.1 9.1 36.9
honey 21.4 38.3 63.7 23.3 22.5 21.7 42.1
shooters 12.1 28.0 55.8 34.2 39.5 30.0 30.0
Huckleberry_Finn 12.9 29.7 48.4 18.3 18.3 27.1 37.3
sophie 8.3 34.4 52.5 21.7 19.6 51.1 31.8
time_expired 9.5 39.1 44.5 19.6 19.6 24.0 33.8
spiritual_contact 12.3 33.3 50.6 32.1 22.6 26.3 72.7
Valkaama 14.4 17.4 36.2 15.4 15.4 22.2 50.0
Nuclear_Family 30.0 53.9 67.3 21.4 14.3 12.5 46.7
SuperHero 18.3 22.2 61.1 11.1 11.1 30.0 50.0

Average 14.7 31.6 51.1 21.5 19.2 25.4 43.1

Table 1: Training Evaluation (percentage) on Section 4.2 Tasks

Movie S1 S2 S3 S4 S5 S6

Chained_for_life 1.7 50.0 2.5 33.3 0.0 16.7
Liberty_kid 8.3 77.8 25.0 25.0 10.0 0.0
Like_me 31.6 62.5 50.0 75.0 20.0 0.0
Little_rock 7.50 62.5 0.0 0.0 0.0 33.3
Losing_ground 25.0 38.3 0.0 0.0 30.0 16.7
Calloused_hands 3.3 100.0 50.0 50.0 30.0 16.7

Average 12.9 65.2 25.0 30.6 15.0 13.9

Table 2: Test Evaluation (percentage) - Section 4.2

maximum hits between triplets set of that scene’s knowledge-
graph and triplet-sets of the candidate.

• S3: Given a scene in a movie and an interaction between A
and B, pick the correct next interaction between A and B in
a specific scene from a set of possible interactions.
e.g. Question: In scene 3, Jeremias talks to John, what is the
immediate next / following interaction between Jeremias and
John in scene 5? Choices: compliments, pays, teases, leave
together, demands, asks.
Approach: Owing to absence of temporal scale in the knowl-
edge graph, we iterate over the constructed knowledge-
graph interactions between the two given entities from the
scene in prompt and return the first hit from the choice list.

• S4: Given a movie scene and an interaction between A and
B, pick the correct prior interaction between A and B in a
specific scene from a set of possible interactions.
e.g. Question: In scene 15, John asks Jeremias, what is the im-
mediate prior / previous interaction between John and Jeremias
in scene 14? Choices: reminds, waves at, touches, serves, asks.
Approach: Same method leveraged as that of S4.

• S5: Given a text-description for a movie scene, select the
scene that best matches the description.
e.g. Question: Which scene best matches the following de-
scription:John calls Helena, Jeremias, Chris, and Jennifer for
dinner? Choices: 1, 2, 5, 7, 13, 19, 21, 27, 29, 36
Approach: Generate scene descriptions by combining re-
lationship predictions from Scene-Graph generation and
inference of interactions, sentiments, location and emotions
through image-language mode in a natural language-like

form. Each pair in a scene is described as: [In (sentiment_tag),
(emotion_tag) person_1 (relationship_tag) (interaction_tag)
(emotion_tag) person_2 (relationship_tag) in (location_tag)].
Returns scene with the best description-sentence similarity.

• S6: Given a scene in a movie and a set of possible sentiments
pick the correct sentiment.
e.g. Question: In scene 1, what is the correct sentiment label?
Choices: escape, baby shower, frightening experience, recruit-
ing, greeting, charity event.
Approach: We get top 10 mostly likely sentiment predic-
tions for the scene asked in the prompt from the model. For
each (predicted sentiment, choice sentiment) pair, we calcu-
late the cosine similarity value stored in matrix mentioned
at the beginning of this section. And we pick the choice sen-
timent in the pair that has the highest similarity score as the
answer. If two pairs have the same similarity score, the pair
has higher ranked predicted sentiment is preferred.

5 DISCUSSION
We conducted an analysis as annotators to understand whichmodal-
ities are more likely to influence our understanding of interactions.
Can a particular interaction be inferred through visual domain
alone eg: bullies, hugs, kisses etc., or require dialog understanding
as they are more nuanced like "talks", "explains", "asks" which can’t
be differentiated in images. By examining scenes from the training
movies, we discovered about 43% of interactions can only be in-
ferred if both dialog and visual aspects of the scene are considered
together. Due to this limitation, since our model mainly relies on
image frames for inference, it can benefit from dialog features. We
leave the exploration of incorporating dialog encoder for further
fine-tuning the image-text representation for future work.

6 CONCLUSION
The experiments confirm our hypothesis of how important novel
face-head-tracking is for multi-modal semantic understanding and
knowledge-graph generation. The accuracy and mean-reciprocal-
ranks see a substantial increase with the new features added to our
language-grounded-vision models. The added object-properties as
features help steer the semantic and relational properties between
entities through semantic contextual search.
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