
MultiModal Language Modelling on Knowledge Graphs for
Deep Video Understanding

Vishal Anand 1, Raksha Ramesh 1,2, Boshen Jin 1,2, Ziyin Wang 1, Xiaoxiao Lei 2, Ching-Yung Lin 1,2
1 {va2361, rn2486, bj2437, zw2605, c.lin}@columbia.edu, 2 {xiaoxiao, cylin}@graphen.ai

1 Columbia University, New York, NY, USA
2 Graphen, Inc., New York, NY, USA

ABSTRACT
The natural language processing community has had a major in-
terest in auto-regressive [4, 13] and span-prediction based lan-
guage models [7] recently, while knowledge graphs are often refer-
enced for common-sense based reasoning and fact-checking mod-
els. In this paper, we present an equivalence representation of
span-prediction based language models and knowledge-graphs to
better leverage recent developments of language modelling for
multi-modal problem statements. Our method performed well, es-
pecially with sentiment understanding for multi-modal inputs, and
discovered potential bias in naturally occurring videos when com-
pared with movie-data interaction-understanding. We also release a
dataset of an auto-generated questionnaire with ground-truths con-
sisting of labels spanning across 120 relationships, 99 sentiments,
and 116 interactions, among other labels for finer-grained analysis
of model comparisons in the community.
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1 INTRODUCTION AND BACKGROUND
As the natural language processing community is making increased
inroads into understanding human conversations and human-like
chat-bots, the research attention increased the spans across different
modalities to improve understanding of natural conversations. The
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Figure 1: Sections of multi-domain data generated

Deep Video Understanding (DVU) dataset [5] has been explored
recently by the community [1, 3, 6, 12, 14] and is highly relevant
to carry out our experiments on deep-video-understanding tasks
across free-form information modalities. While models attempt to
merge information across modalities, one commonly faces the prob-
lem of knowledge representation in different embedding spaces,
namely a label-type information would be in a different embed-
ding space as opposed to say an image representation in a neural
network. A way to deal with the problem is to tune network’s
hyperparameters for individual modalities. We worked with the
representations identified in the paper Vishal et al. [1] and realized
the transformer-based approach for decoding the network parame-
ters could be very useful especially if a native transformer model,
such as HERO [9] is trained with ample video dataset sizes. Explo-
ration of other auto-regressive models and span-predicting models
could mean performing few-shot or zero-shot learning. However,
given the movie datasets are few and rare to come by, we decided to
look into zero-shot transfer learning paradigms built on the basis of
these two papers [1, 9], including the data-preparation and building
blocks as a starting point.

2 SYSTEM
2.1 Human-Interaction Interface
To analyze multi-modal models, we created an interface currently
internally hosted at Graphen Inc (fig. 1) to create, view and interact
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with knowledge bases. A link to a version with static analysis of
task dataset will be released for public access here. 1

Researchers can either upload a movie, or choose a training
movie from the DVU-training-set. The scene-splits are then gen-
erated from the original video. For each scene’s video, bounding
boxes on detected faces are tracked along the video and a knowl-
edge graph visualization is generated below the video while being
processing through the language models. One can then interact
with the graph by zooming, dragging or centering on nodes, and
clicking specific nodes to display scene level information from the
knowledge graph. Questions on relations, sentiment, interactions
and question-answering are generated on the fly.

Further versions of the platformwill allow researchers for sophis-
ticated interactions and visualizations to help understand videos bet-
ter, including crowd-sourcing annotation and human-suggested cor-
rections on proposed answers and scene-boundaries and knowledge-
graphs to allow for label visualization, leading to larger gold-datasets.

Researchers can dissect a given video to multiple modes of rep-
resentations, such as scene-boundary generation, generate audio
and transcripts, detect faces and track with bounding boxes on the
faces, display names, emotions, interactions, objects, location, back-
ground as labels, and generate knowledge graphs on both movie
and scene levels.

2.2 Graph Query Language - Language
Modelling

We identified social relationships and interactions among entities,
emotion of these entities, and sentiments in movies at scene level.
With these knowledge extracted frommovies, we formalized knowl-
edge graphs that could effectively abstract movies and could be
efficiently queried by openCypher[2] for key information (e.g. in-
ferring relationship between two characters).

2.2.1 Knowledge Graph Structure.
Figure 2 describes our knowledge graph representation that has two
node-types: Person, Scene, and three edges-types: Emotion, Relation,
and Interactions. Person nodes’ properties consists of character-
names and reference IDs. Scene nodes have an additional property
called sentiment, which represents a highly abstract conclusion of
each scene. For edges, Emotion edges bridge Person and Scene nodes,
indicating characters’ emotions for each scene. Relation edges rep-
resent social relationships between any two entities in movies,
and Interaction edges list all interactions between two people in
different orders within different scenes. Since our model might
render multiple interactions between two entities with different
confidence-scores based on each multimodal data-segment, we can
have multiple edges between them with the same order numbers
and scene numbers.

1https://vishalanand.github.io/deep-language-multimodal-graphs/

Figure 2: Knowledge Graph Structure

3 TASKS AND LANGUAGE MODEL QUERIES
Our graph query can handle various kinds of questions and these
questions could be categorized into two types: movie level questions
and scene level questions. For each kind of questions, our graph
query has one corresponding command to fetch related information
and further processes could be initiated based on returned results.

3.1 Global Scale: Movie Level Questions
(1) M1: Find relational paths between two characters

Sample: List all possible paths between Alice and Bob.
Query:

graphAnalytic(KG_name, "path",
{

"depth": 6,
"vertex_source":{"id": "1", "label": "Person"},
"vertex_target":{"id": "2", "label":"Person"},

"edge_labels":['relation']
})

(2) M2: Fill in the graph space
Sample:Which Person has Relation: SpouseOf Person:Marge?
Query:

queryOpenCypher(KG_name,
"match (s:Person)-[r:relation {relation:'Spouse of'}]

-> (t:Person {name: 'Marge'})
return s, r, t")

(3) M3: Question answering
Sample: How is Ms. Krabappel related/connected to Spring-
field Elementary?
Query:

queryOpenCypher(KG_name,
"match (s:Person {name: 'Ms. Krabappel'})-[r:relation]

-> (t:Person {name: 'Springfield Elementary'})
return s, r, t")

https://vishalanand.github.io/deep-language-multimodal-graphs/


3.2 Local Scale: Scene Level Questions
(1) S1: Find Scenes based on interactions

Sample: Which Unique Scene contains the following Interac-
tions: explains to, asks, lies to, walk with, asks, talks to, talks
to, talks to

Query:
queryOpenCypher(KG_name,

"match (p1: Person)
-[i: interaction {scene_num:'%s'}]
->(p2: Person)
return p1, i, p2" % (all scene numbers))

This iterates through all the scenes and their interactions to
find the best match with prompt

(2) S2: Find Person based on scene number and interactions

Sample: Which Person in scene 13 has the following Interac-
tions: talks to Target-Person: Princess-Lala, Source-Person:
Princess-Lala greets?

Query:
queryOpenCypher(KG_name,

"match (p1: Person)
-[i: interaction {scene_num:'13'}]
->(p2: Person)

return p1, i, p2"
)

Here, the schema iterates through all interaction pairs for
the prompt to locate the Person

(3) S3: Find next or previous interaction between two people
Sample: n Scene 13, Prince Ken Arok watches Harold. What
is the immediate next / following interaction between Prince
Ken Arok and Harold, in scene 13? Query:

queryOpenCypher(KG_name,
"match (p1: Person {name: 'Prince Ken Arok'})

-[i: interaction \ {scene_num:'13'}]
-> (p2: Person {name: 'Harold'})

return p1, i, p2")

Here, the schema finds the ordering occurrence of "watch"
in the language model’s results and traverse to find the next
interaction between these two people.

(4) S4: Find sentiment label based on scene number
Sample: In Scene 13, What is the correct sentiment label?
Query:

queryOpenCypher(KG_name,
"MATCH (s:Scene \{name: '13'\}) return s")

(5) S5: Find scene matching with given natural-language de-
scriptions.

(6) S6: Classify scene sentiment from a given scene.

4 METHOD AND BUILDING BLOCKS
We have a zero-shot transfer-learning model that infers and ex-
tracts information from free-form multimodal sources - text, sound,
video, shot-splits, speaker-diarization, and face-tracking to create a
knowledge-graph using language modelling questionnaire through
slot-filling. After analysing different models based around [9, 11],
we trained the model based on HERO [9] for 10000 epochs as our
basis for zero-shot transfer learning owing to a lack of ample movie-
data with accompanying auxiliary datasets.

HERO uses cross-modal Transformer and captures global video
context through a temporal transformer, that is suited to capture
multi-character interactions. As HERO is trained on HowTo100M
[10] and TV datasets[8], we utilize the benchmark to investigate
if the embeddings are transferrable on movie-datasets with more
complex plots and evolving social dynamics. We attempt to ex-
tract the relationships and interactions between entities in a scene
through an intuitive video-question answering framework. The
questions we encode are as follows: "What is entity1 doing in this
video?", "What is entity1’s relation with entity2?" and provide the
different interaction and relation class categories as prompts re-
spectively. We localize entities through aligned speaker-diarized
text, face recognition and tracking and pose these questions when
the entities of interest are co-located in a scene.

Apart from the slot-filling based QA framework, we implement
text-video retrieval similar to the video-subtitle matching in HERO
[7] to match the scene descriptions with the scenes. We summarize
the results on the scene-level queries in the following section.

5 EVALUATION AND DISCUSSIONS

Movie Localized Metrics
S1 S2 S3 S4 S5 S6

Spiritual Contact 2.85 71.42 16.98 7.50 28.94 69.69
Honey 1.45 68.09 10.81 14.29 21.73 42.10
Nuclear Family 2.08 50.0 7.14 16.49 31.25 46.67
Sophie 0.06 50.53 16.49 18.87 40.00 40.91
Superhero 1.25 77.78 0.0 11.11 30.00 50.0
Huckleberry Finn 0.11 48.31 7.04 7.04 25.42 42.37
Shooters 0.34 52.0 7.89 10.52 35.00 55.0
The Big Something 0.03 66.0 18.18 18.18 31.81 36.92
Time Expired 0.02 54.29 2.17 5.43 32.00 56.76
Valkaama 0.08 73.91 30.77 23.07 37.70 50.0
Average 0.83 61.23 11.75 13.25 31.00 49.04

Table 1: Extrinsic Evaluation(%) on Tasks in Section 3.2

The extrinsic and intrinsic evaluations are listed in Table 1 and
Table 2 respectively.

5.1 Automatic Data Evaluation Generator
The questions are generated on the fly on all possible sources and
targets of the unseen knowledge-graph. Given each source-target



Movie Sentiments Interactions
Original Score Normalized Score

MRR% R@10 R@20 R@50 Acc MRR% R@20 R@50 MRR% R@20 R@50
Spiritual Contact 48.90 55.80 60.50 81.40 46.51 5.20 7.56 37.90 8.50 34.20 50.60
Honey 28.20 52.00 68.00 84.00 16.00 4.20 17.10 42.70 4.60 23.90 41.90
Nuclear Family 9.30 23.50 29.40 58.80 0.00 1.60 4.20 20.80 6.30 33.30 66.70
Sophie 29.00 37.00 41.30 69.60 23.91 5.00 12.80 23.90 8.50 32.50 57.30
Super Hero 28.60 37.50 37.50 62.50 25.00 1.50 0.00 29.60 1.60 40.70 55.60
Huckleberry Finn 25.60 28.80 45.80 72.90 20.33 3.00 11.00 26.80 3.70 15.90 32.90
Shooters 30.90 35.00 50.00 60.00 25.00 1.50 4.40 12.40 9.40 57.50 76.10
The Big Something 29.70 33.80 40.00 64.60 26.15 1.90 6.90 15.50 8.00 36.20 63.80
Time Expired 43.10 51.40 63.50 86.50 36.48 1.50 3.60 12.10 4.50 22.10 30.40
Valkaama 38.30 50.00 52.20 63.00 32.60 1.50 1.90 11.30 12.10 60.40 77.40
Average 31.16 40.48 48.82 70.33 25.20 2.69 6.95 23.30 6.72 35.67 55.27

Table 2: Intrinsic Evaluation(%) with
(𝑛
2
)
auto generated questions on our Model

pair, we attempt to walk our model generated output via asking
language questions in a slot-filling fashion. The knowledge graph
equivalence is established via OpenCypher paradigm to allow our
approach to be model agnostic. This allowed us to use human-
proposed knowledge-graphs to analyze how different aspects of
language tasks performed for a specific movie where additional
meta data can be added-on to identify weak and strong points of
our multi-modal model.

5.2 Extrinsic Evaluation
The extrinsic evaluation is based on the actual tasks defined in
Section 3.2 on the auto-generated questions. The movies analyzed
in Table 1 are the training movies, which is how we have their
ground truth available for evaluation.

5.3 Intrinsic Evaluation
The intrinsic evaluation (Table 2) are based on the validity of model-
generated answers to our slot-filling questions that are leveraged
to fill-in the link-types between the sources and targets in a given
question.

5.4 Discussion and Analysis
While the extrinsic evaluation (Table 1) on given tasks gave us
interesting insights into what areas our knowledge-graph did not
capturewell enough (S1, S3) and some areas that ourmodel captured
really well (S5, S6) in comparison, this led us to investigate why
that happens to be the case.

So, we created automatic generation of
(𝑛
2
)
intrinsic questions

for the each unit of the dataset. The zero-shot transfer model fails
to grasp who is speaking and to whom. It’s not good enough to add
face-tracking information along with other modalities here, owing
to the fact that a large expanse of videos sampled for initial training
does not take each person as a separate unit, but rather set of objects
as a single class-type. This allows us to understand what is action is
taking place in amultimodal input, but unless explicitly called out in
the text or speech, our language model fails to establish interactions

across the different modes. One way to solve this problem is to fine-
tune our model using face-tracker based attention-heads in the
decoder of transformer when the model evaluates answers to our
auto-generated questions of person properties and object properties
before assigning confidence scores.

Using the same analysis, we realize our model’s sentiment ac-
curacy are high because our model establishes an equivalence to
language model that works very well with text-segments, thus us-
ing the text of each character’s conversations to the best use, and
other modes of inputs only add to it, thus leading to no unwanted
negative transfer.

Moreover, we can also attribute the relatively poor performance
in S3 to a distribution shift from training data, common in zero shot
transfer models. Since we adapt HERO [7] trained on TVQA dataset,
we find that our model captures interactions that are localized in
shorter segments within a scene. But these inferred interactions
are considered as false positives as the ground truth annotations
are available on a high-level and not as fine-grained.

Our model performs well for (S5) matching the scenes with the
scene descriptions since the model captures visual concepts, actions
and descriptors well to match with the correct scene.

6 CONCLUSION
We demonstrated a multi-modal framework leveraging knowledge
graphs and language model equivalence structure that infers senti-
ment very well, and we discover the problems on individual-entity
based grounding in multi-modal frameworks, that could be consid-
ered a stretch from class-based-entity grounding. This is of specific
importance for multi-modal language modelling since slot-filling
mechanisms can be sensitive owing to lack of enough clearly de-
marcated individual-entity data across modalities, since Spoken
Language Understanding (SLU) or text-only data contains ample
information for individual-entity understanding. We also release
the dataset on movie and scene level intrinsic evaluation to un-
derstand label specific model affinity of knowledge extraction and
retention across different information modalities to help identify
and consolidate multiple models’ strengths into a larger ensemble
that could lead to potential breakthroughs in this space.
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