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ABSTRACT
We create multi-modal fusion models to predict relational classes
within entities in free-form inputs such as unseen movies. Our
approach identifies information rich features within individual
sources – emotion, text-attention, age, gender, and contextual back-
ground object tracking. These information are absorbed and con-
trasted from baseline fusion architectures [1]. These five models
then showcase future research areas on this challenging problem of
relational knowledge extraction from movies and free-form multi-
modal input sources. We find that, generally, the Kinetics model
added with Attributes and Objects beat the baseline models.
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1 INTRODUCTION
Recent progress in neural networks and deep learning shows excit-
ing potential for the hard problem on video understanding on free-
form inputs. Today’s digital contents are inherently multi-modal.
Promising results achieved in deep analysis tasks on image, speech,
audio, text, and video domains have motivated processes to learn
video representations to better exploit abundant multimodal clues
for video annotation using natural language and video question
answering. However, there is still a knowledge limit on computer
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vision systems to develop deep analysis in semantic relation under-
standing among multimodal entities. Most computer vision systems
analyzing long duration videos taking one or more modalities fail
to effectively condense the extracted sources to answer natural
language processing or knowledge graph queries.

2 BACKGROUND AND RELATEDWORK
A multimodal model can represent the joint representations of mul-
tiple input modalities [27]. Different modalities are characterized by
different statistical properties. Moreover, different modalities with
different statistical properties will influence over the prediction
output.

Multimodal model is widely used in many areas such as medical
[26] [29] [18], education [8] [5] [20], transportation [16] [25] [6]
and media [17] [28] [21]. It has been applied to a broad set of appli-
cations such as classification and information retrieval tasks. The
multimodal model is useful for classification such as text classifica-
tion, video classification, sentiment classification. Krishnamurthy
et al. [13] combined the audio, video, and text features to detect
deception in videos. Huang et al. [9] used fusion-based multimodal
attention model to exploit the internal correlation between visual
and textual features for joint sentiment classification.

Recognizing fine-grained social relationships & actions from
small-scale datasets is a challenging task that requires us to leverage
transfer learning to boost the generalisability of the model. In this
paper we extend the recent work [1] on semantic relationship
understanding by learning holistic scene and text representations.
We present a discussion on the most useful feature sets to model the
target task of pairwise relation prediction which can be useful for
other video understanding tasks such as visual question answering
that involve multimodal sources.

3 METHODOLOGY
Firstly, we process the video files by capturing changes in the story
line through scene boundary detection. This enables us to better
localize the entities of interest. We then detect and map each en-
tity with the associated ground-truth through face clustering and
SIFT based object mapping. Next, we extract multiple visual and
contextual object cues to enrich the scene modality and extract em-
beddings for speaker-diarized text. We then train a unified model
to produce probabilities for a pairwise entity relationship.

In the following section, we present a brief overview of the
building blocks that is constructed on top of baseline pipeline [1].

4 DATASET
The High-Level Video Understanding (HLVU) dataset [4] includes
10 movies that are suitable for researching the relationship between
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Figure 1: Architecture of the multi-modal fusion model

entities. The HLVU dataset meets the important requirements for se-
lecting movies such as the duration of the movies (different lengths
of movies: 6 long movies and 4 short movies), the quality of the
video, and the clarity of the storyline. The training set is anno-
tated with images of key characters, locations, objects and concepts
along with pairwise relations between the entities. There are sixty
symmetric relationships to learn. The testing sets only contain the
images of key entities.

5 BUILDING BLOCKS
• Scene Detection:
We group together multiple adjacent shots that are semanti-
cally related into scenes to capture changes in storyline. We
adopt the dynamic programming approach in [23] and use
HSV color histograms as features to predict scene bound-
aries.

• Face and Object Entity mapping :
We densely detect faces in each video frame with dlib’s face
detector and facial landmark predictor. The aligned faces
are mapped to 128D embeddings with dlib’s ResNet trained
with triplet loss. We use Chinese whispers [3] for clustering
unidentified faces and use KNN to assign each cluster to the
majority label predicted.
The object and location entities are localized in the scenes
through SIFT based feature matching [24]. The best matches
between the template and the scene are computed by sorting
the feature descriptors distances obtained from keypoints.

• Speaker Diarization and Face Mapping :
We use CMU-Sphinx to generate speaker-separated audio
splits and perform speaker identification using scene based
face mapping. The speakers are identified by using dlib’s [11]

68 point facial landmarks to capture the movement of the
speaker’s lips and lip motion is estimated using the relative
ratio of vertical lip shape to face size.

6 APPROACH
6.1 Kinetics Features
3D CNNs utilize spatio-temporal convolutional kernels that are best
suited for action recognition tasks. The Kinetics dataset contains
400 human action categories spanning singular person actions,
and interactions with other persons and objects. To capture scene
dynamics, we therefore extract features for video sequences within
a scene from 3D ResNet network [7] pre-trained on the Kinetics
dataset [10].

6.2 Attribute Features for Person Entities
We automatically extract age and gender attributes for every person
entity of interest. We follow the stacked CNN implementation as
per [14] trained on the Aidence benchmark.

6.3 Emotion Features for Person Entities
We explore the association of emotions expressed between per-
son entities in determining their social relationship through two
modalities - facial expressions and speech emotions. For facial emo-
tion recognition, we fine-tune the VGGFace network [19] on the
FER2013 emotion dataset to detect six emotion categories - happy,
sad, anger, disgust, fear and surprise. We extract emotion embed-
dings from the fine-tuned model for every person entity for a se-
quence of 16 frames within a scene.
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6.4 Text Features
First, we use CMU-Sphinx to produce speaker-separated audio
splits and then use Google-API with speaker identification to as-
sign speakers with names. After that, we fine-tune the DialogRE
[30] model, which is based on bert, to extract relations from our
dialogues. With automated-mapping of 36 relation-categories to
our 60 relation-categories, we augment our data. Then we take
the results from DialogRE model as our text features to train with
kinetics features and attributes features.

6.5 Contextual Background Objects Features
We extract image embeddings from Faster R-CNN network with
a Resnet-101 backbone. [2]. The object proposals are pre-trained
on Visual Genome data [12] which contain visual attributes like
colours and clothing along with densely annotated objects.

Anchor boxes of different scales and aspect ratios are extracted
from the Faster R-CNN’s [22] region proposal network through
selective search. These proposals are further refined through non-
maximum suppression. We threshold the number of candidate ob-
ject regions to 10 and filter out proposals with weak confidence
scores. We then extract an image embedding of dimension 2048
to represent each proposal. The features are average pooled and
concatenated with global kinetics features above. These features
from the salient image regions embed contextual cues from the
surroundings of the co-located entities and aid in better scene rep-
resentations.

7 IMPLEMENTATION
We first localize entities and create individual scene-level tracks
for all entities that occur in a scene. The tracks Figure 1 are tempo-
rally aligned with the original scene and contain cropped bounding
boxes of an entity’s body regions obtained through SSD [15]. We
further choose contiguous sequences of 16 frames to represent
an interaction between the entities and use an appropriate frame
margin to limit the search space for sequences. We initialize our
network with weights from a 3D ResNet network pre-trained on
the Kinetics dataset and further fine-tune the model with addi-
tional fully-connected layers to learn the primary sixty relationship
categories in the dataset.

We experiment with fusing embeddings obtained from facial ex-
pressions, conversational dialogues and also inject age and gender
attribute features into the network and jointly train the network.
Further, we explore the role of contextual cues from background
objects by fusing the feature maps from Faster-RCNN’s object pro-
posals with the Kinetics’ features.

For training, we use cross-entropy loss with Adam optimizer.
We choose initial learning rate of 0.001 and reduce it by a factor of
10 when validation loss saturates. We also use batch normalization
and dropout for regularization.

In the next sectionwe analyse the contribution of all these feature
sets towards the target task of semantic relation understanding.

8 EVALUATION AND RESULTS
In our study, we compare and contrast the performance of 5 models,
namelyKineticsModel,Kinetics with Age andGenderModel,Kinetics
with Age, Gender and EmotionModel, Kinetics with Age, Gender and

(a) Precision

(b) Recall

(c) F-1 Scores

Figure 2: Multi-Modal Kinetics Fusion Scores for Top-k
classes, k=10
M1 = Kinetics features
M2 = Kinetics + Attributes (Age + Gender)
M3 = Kinetics + Attributes (Age + Gender) + Emotion
M4 = Kinetics + Attributes(Age + Gender) + Text
M5 = Kinetics + Attributes(Age + Gender) + Object Context

Text Model and Kinetics with Age, Gender and Object context Model.
To evaluate the model we perform cross validation and compare the
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Classes M1 M2 M3 M4 M5
P R F1 P R F1 P R F1 P R F1 P R F1

Parent Of 0.51 0.08 0.14 0.47 0.05 0.09 0.46 0.07 0.12 0.62 0.22 0.32 0.67 0.23 0.34
Sibling Of 0 0 0 0.19 0.04 0.06 0.21 0.1 0.13 0 0 0 0.55 0.01 0.02
Spouse Of 0 0 0 0.39 0.25 0.30 0.46 0.23 0.30 0 0 0 0.53 0.05 0.1
Friend Of 0.01 0.07 0.02 0.01 0.09 0.01 0 0.05 0.01 0.04 0.62 0.08 0.01 0.1 0.02

Table 1: Comparison of precision, recall and F1 scores for four prominent classes for the movie Spiritual Contact

precision, recall and F1 scores across the fivemodels.We analyze the
contribution of embedding the age gender attributes (M2), emotion
(M3), text (M4) and object cues (M5) to the baseline model (Kinetics
features only) (M1) independently.

Table 1 summarizes the scores for the top four classes present in
the evaluation movie Spiritual Contact across all the models.

We further extend this analysis by averaging the scores across
all training movies. The plots in Figure 2 visualize the weighted
average precision, recall and F1 scores across the six training and
validation movies. Some key observations from the plots in Figure
2 and the Table 1 are summarized below:

• The precision, recall and F1 scores increase significantly for
the "Sibling Of" and "Spouse Of" classes when the age and
gender attribute features are embedded into the baseline
model. We further see an increase in precision for these
classes when emotion is embedded with the age & gender
attributes. For example, in Spiritual Contact (Table 1), we
observe a percentage increase of 10.5% and 18% in precision
for these classes.

• From Table 1, we can observe, age & gender attributes is not
a discriminatory feature for "Friend Of" class. But it is also
interesting to note that while these attributes alone do not
contribute, embedding emotion increases the scores of this
class on average as seen in Figure 2.

• In Table 1, for "Parent Of" class, precision of M5 increases by
31% from the baseline. This trend is true across all movies.
Therefore, introducing background object features from the
scene increases the scores on the "Parent Of" classes which
suggests the model recognizes certain visual contextual cues
to be indicative of parent-child relationships. Similarly, we
also observe higher recall and F1 scores for M4 in Table 1
and higher average recall and F1 scores in Figure 2 in com-
parison to M1, M2 and M3. This indicates the conversational
cues are more effective than emotion to identify parent-child
relationships.

• The low precision and recall scores on some classes like "In-
fluences", "In Relationship With" and "Would Like to Know"
are due to a lack of training samples. Although these classes
are among the top ten classes present in the training set i.e.,
contain most number of samples, the video sequences we ex-
tract for these classes either belong only to one movie within
the training set, or to particular pairs of entities within that
movie. This can be attributed to the longer duration of these
movies (leading to the sampling of more sequences) relative
to other movies, resulting in poorer generalisability across
all the other movies. Further, among the 60 relationship cate-
gories mentioned in the dataset, we are able to extract video
sequences for 30 relationship categories. This suggests the

need to augment the existing dataset to increase performance
on other classes.

In summary, while adding just age and gender attributes can result
in some irregularities in the scores, further embedding emotion,
text or object context in the model significantly improves the scores
across most classes.

9 CONCLUSION AND FUTUREWORK
Human computer interaction focus looks very promising as the
path-forward in deep-video-understanding and information extrac-
tion from free-form multi-modal inputs. When attribute features
of age and gender, along with emotion, text or object context are
added to the baseline model, our metrics noticeably improve. This
suggests the ability of feature sets effectively encapsulating seman-
tic relations between entities in multi-modal sources. The features
that perform better have a larger sample size, and we find majority
of data sources are skewed due to imbalanced training classes, that
can be augmented for better training and human evaluation.

A future direction of research could be to incorporate head track-
ing to improve face-entity mapping and incorporate crisper speaker
diarization to improve the results on the text fusion model. A higher
focus on human centered interaction metrics of humor, anger or
passion in text and visual cues may lead to higher scores and deeper
understanding of videos.
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