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ABSTRACT
We consider the problem of building semantic relationship of un-
seen entities from free-form multi-modal sources. This intelligent
agent understands semantic properties by creating (1) logical seg-
ments from sources, (2) finds interacting objects, (3) infers their
interaction actions using (4) extracted textual, auditory, visual, and
tonal information. The conversational dialogue discourses are auto-
matically mapped to interacting co-located objects, and fused with
their Kinetic action embeddings at each scene of occurrence. This
generates a combined probability distribution representation for
interacting entities spanning over every semantic relation class.
Using these probabilities, we create knowledge graphs capable of
answering semantic queries and infer missing properties in a given
context.
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1 INTRODUCTION
With the growing popularity of common sense inference, deep
video understanding aims to to automatically deduce relationships
between entities in long duration multi-modal inputs and extract
knowledge to address varied query-types. With the surge of break-
throughs in text models [5], many tasks have started leveraging
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transfer-learning on textual data, and recent works now leverage
video data, such as event recognition, object detection, and activity
recognition. However, a significant knowledge gap exists between
joint inference of multiple aspects of the video properties like audio,
transcribed conversation and scenes. Key to this intelligent agent
is the isolation, fusion and analysis of multimodal features with
sufficient annotations for training robust models. In our work, we
take a holistic perspective to address the semantic understanding
problem in consideration of all available modalities to infer hidden
information, and eventually construct knowledge graphs. By fus-
ing different modalities, we gain better understanding of entities,
relations and events within movies. In particular, we focus on in-
corporating reasoning from text and scene, the methodology used
including conversational dialog discourse, shot and scene detection,
object detection and mapping, and face detection.

2 BACKGROUND AND RELATEDWORK
Many approaches for video understanding adopt the question an-
swering prototype for evaluation. Knowledge graphs are known
for capturing both concepts and their pairwise relationships, and
their application have been successful to machine learning appli-
cations including Web search and social media [6]. Knowledge
Graph construction considers three generalized tasks: 1) knowl-
edge extraction, 2) entity mapping, and 3) data integration. Work on
multimodal approaches involving knowledge graphs [8] bridges the
gap in existing state-of-the-art approaches as it unifies knowledge
graphs and deep neural networks in a novel end-to-end learning
framework by incorporating external knowledge into video clas-
sification. While we propose a multi-modal formulation, [8] has a
single-modal approach that takes unstructured text as input and
creates a Knowledge Graph with 5 components (Entity Mapping,
Co-reference Resolution, Triple Extraction, Triple Integration, and
Predicate Mapping). In the domain of social relationship under-
standing, most existing studies focus on modelling relationships in
still images using coarse to fine hierarchical categories [16]. [10]
adopts a dual-glance model to make a coarse prediction from ob-
jects and appearances while the second glance use contextual cues.
[12] propose multi-scale spatiotemporal reasoning framework to
capture visual relations between entities. The use of multimodal
frameworks in the context of relationships and interaction predic-
tions are not widely explored, which we attempt to address.

3 METHODOLOGY
We place higher importance on context over interactions of indi-
vidual entities in any of the multi-modal sources. Firstly, we divide
resource-rich video files to identify shots that are representative
of change of reference of vision. Second, we find a contiguous
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Figure 1: Architecture Schema for multi-modal training.

narrative among the shot-segments, i.e., change in storyline is de-
termined based on when scenes change. This is captured by change
in video based light features and maximizing sum of shot-to-shot
distance products. With scenes identified as contiguous sets of sto-
rylines, we extract their video’s textual description, perform audio
transcription from the extracted audio, and find diarized texts from
individual entities in the scene.

Next, we extract faces in each frame, cluster them and associate
with provided ground truth for each movie, and in parallel, find
each face’s body frames. For each frame, we also extract common
objects occurring in the scene to enrich data. Each of these entities
are then fed into a kinetics model which emits their probable ac-
tion being performed. All of these are then used to train a unified
model which associates the actions and co-location of entities to
produce a set of probabilities for each pair of entities. We also have
human evaluation to contrast the performance of our model and
add comments on hardness of the problem.

4 DATASET
The HLVU dataset (Table 1) has 10 open source movies sampled
from paper [4]. The training set includes four long and two short
movies, while testing set includes two long and two short movies.
The dataset is annotated with relations between key characters,
locations, objects, action events, along with names and images of
key entities. The objective is to learn 120 semantic relations between
the entities in the dataset using multimodal inputs.

5 BUILDING BLOCKS
5.1 Shot & Scene detection
We perform shot detection on all movies and identify key frames.
The frames features extracted are grouped together by similarity
scores using sliding-windows into scenes as illustrated in Fig. 2. A
scene consists of a sequence of adjacent shots that are semantically
related and represent a story within a movie. We cluster multiple
shots together and uses some shot-embeddings to deduce if they

Figure 2: Scene Detection Process

are temporally aligned. We analyze and extend the scene detection
work by [13] and adopt the dynamic programming approach to
minimize the normalized cost function to group shots together,
however we found that using HSV color histograms for features
to predict scene boundary accuracies were far more superior than
using deep features for movies.

5.2 Object detection and mapping
The entities provided in the HLVU dataset [4] include person, ob-
jects, locations and concepts for which relevant images are provided
for mapping. The locations and object entities are localized within
scenes using SIFT based feature matching to handle varying scales
and crops. Keypoints within a frame are computed and descriptors
are extracted from each keypoint. Euclidean distance metric is used
to compute the best matches between a template and a frame.

5.3 Face detection
The dlib’s [9] face detector identifies faces in each video frame.
The face detector uses Histogram of Oriented Gradients (HOG)
feature combined with a linear classifier. With an image pyramid,
and sliding window detection scheme, the detector is able to detect
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faces at various scales and locations. These faces are aligned by the
5 facial landmarks detected by dlib’s facial landmark predictor.

5.4 Face-Entity Mapping
The aligned faces are mapped to 128D vectors using dlib’s ResNet
model trained with triplet loss [15]. We also compute the face
embeddings for profile images of important characters. We identify
the faces by comparing it with the known faces. The unknown faces
are first clustered using Chinese whispers [1]. Then, we predict
the most similar person with K-nearest neighbors (KNN) for each
face detected in the video. The face clusters are labeled with the
majority label predicted by KNN. The face clusters with too few
entities are labeled as ’unknown’.

5.5 Scene description
We generate scene descriptions at shot-level based on [18] Frame-
wise RGB and optical flow features are pooled with region proposals
extracted from Faster R-CNN detector. The network is trained on
ActivityNet [2] and we observed that the descriptions generated
do not accurately capture background objects and scenes. This
suggests the need to fine-tune an off-the shelf object detector on a
benchmark movie dataset to generate richer descriptions in movies.

5.6 Audio transcription
We use CMU-Sphinx to extract text corresponding to all sound
utterances by the cast of given movies. From the initial results, we
cross-verify with Google API for each sound utterance’s time-stamp.
The quality of either of the processes were not very satisfactory.

5.7 Audio emotion embedding
Acoustic features like pitch, energy frequency and spectral coeffi-
cients like Mel frequency cepstral coefficients (MFCC) are known
to be crucial for emotion recognition and are under-explored in
social relationship understanding. We use audio clips for each
speaker on scene-levels and use VGG-ish model [7] to extract 128-
dimensional semantically compact representation for each second
of audio. These are used in downstream relation-classification task.
By using labelled relationships from training data with audio em-
bedding, we train a supervised GRU network model.

5.8 Speaker diarization & Face mapping
We extend the CMU-Sphinx to produce speaker-separated audio
splits with time-stamps to help with speaker-identification but the
output was not satisfactory for the movies. Later we use Google-
API with speaker identification and found the results similar on
our larger duration audio files. Using the output of both of these
systems, we use scene based face-mapping to assign speakers with
names by using dlib’s 68-facial landmark predictors to capture the
shape of lips and estimate lip motion according to relative vertical
shape change with respect to face size. We maintain a running
average over frames to predict if the target person is the speaker.

5.9 Knowledge Graph relational queries
We construct the knowledge graph to represent what the system
has learnt from the movie, where vertices represent entities includ-
ing people, location, concept and organization, and edges represent

relations between two entities. The vertices and edges, together
with the confidence of relation prediction are ingested to the graph
database on Graphen’s Ardi Platform. We also use the Graph Ana-
lytic module of Ardi to traverse the graph, retrieve relations given
a set of conditions, and get all possible paths between two entities.

6 EXPERIMENTAL-SETUP
6.1 Modality: Scene & Kinetics
To predict a relationship between a pair of entities, we first co-
locate and extract individual scene-level tracks for all entities that
occur in a scene. A track contains cropped frames of the people and
object entities and is temporally aligned with the actual scene. Since
clothing and activity are important semantic attributes contributing
to model social relationships in videos [16], we extract bounding
boxes for a character’s body regions using Single Shot Detection
(SSD) [11]. The bounding boxes for the character’s body regions are
localized based on the maximum intersection over union (IoU) with
the recognized faces. The scene model uses three parallel video
streams - tracks for the pair of entities and the scene as a whole.
Features are extracted from the I3D spatio-temporal convolutional
network [3] used for activity recognition. We experiment with
different durations of video clips to co-locate entities in a scene and
found that choosing a 300 frame margin was optimal. The features
extracted from the video streams are concatenated and fed to a
three-layer MLP trained to predict the sixty relationship categories.

6.2 Modality: Text
Our Text model extends DialogRE [17], based on BERT and we ex-
tract relationships between speakers from dialogues. We fine-tune
the model and extend their smaller set of relations to 60 relational
categories with a fully connected layers. We use our speaker diariza-
tion input at scene levels and use data-augmentation by automated
mapping of 36 relation-categories to our 60 relational categories by
finding neighbors through their embeddings.

7 EVALUATION AND RESULTS
The ACM Grand challenge is based on three different question
types on the HLVU dataset [4] - Type 1 requires us to find all valid
paths from a given source to the target, for which only one correct
solution exists. Therefore F1 scores are chosen as the evaluation
metric. A path is considered to be correct only if all the relations
and entities along the path match the ground truth. Type 2 is Fill
in the graph space, where a list of entities and their relations to
an unknown entity is given. The answer to this question is a list
of potential entities in descending order of prediction confidence.
There are totally 60 symmetric relationships to infer from and
the Mean Reciprocal Rank (MRR) is the evaluation metric. Type 3,
Multiple choice question answering is evaluated by accuracy. 1The
Mean Reciprocal Rank allows to capture more retrieval information
than F1 and accuracy metrics for Type 1 and Type 3 respectively,
which require single solutions.

1For test movies’ F-1 scores in Table 1, we use Path-1 F1 values. For each movie in
training set, we learn from each modality on 5 other train-movies and evaluate on the
remaining one. For each test-movie, we train from all movies in training dataset
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Statistics Evaluation

#Actor #Speaker #Object Time Text Text+Scene Human
Type1 Type2 Type3 Type1 Type2 Type3 Type1 Type2 Type3

Honey 10 10 12 86 min 0 41.7 0.1 25.0 16.7 0 - - -
Nuclear Family 4 4 5 28 min 0 37.5 0 0.0 100.0 0 - - -
Spiritual Contact 10 10 13 66 min 0 37.5 0 0.0 52.1 0 66.7 100.0 22.2
Super Hero 7 7 12 18 min 0 0.0 0 25.0 16.7 0 - - -
Huckleberry Finn 10 10 20 106 min 0 0.0 0 25.0 6.3 0 100.0 87.5 51.8
Valkaama 7 7 13 93 min 0 25.0 0 25.0 58.3 0 100.0 100.0 50.0

Shooters 8 8 11 41 min - - - 1.2 15.9 50.0 - - -
Let’s Bring Back Sophie 13 13 22 50 min - - - 0.0 16.7 50.0 - - -
The Big Something 9 9 12 101 min - - - 0.0 0.0 50.0 - - -
Time Expired 16 16 36 92 min - - - 0.0 0.0 50.0 - - -

Table 1: Evaluation in percentages for six Train and four Test movies; Type 1 finds paths between entities (F1), Type 2 fills in
missing graph information (MRR), and Type 3 finds semantic relations between nodes (Accuracy)

7.1 Human Ground Truth Evaluation
All training movies are seen by human at least twice and annotated
manually in order to create queries and ground-truth for model
evaluation2. We rarely see performance in the range of 80% MRR
for Type 2, and poor results for Type 3 questions, mostly owing to
having too many semantic relation classes for a worker to process.

In human evaluation, workers use background music to better
understand situation’s mood, and grasp conversational context and
bodily gestures more readily. Humans have an implicit access to
external datasets. Recent approaches focus on data representations
but making deductions using multimodal free-form inputs is harder.

7.2 Result Analysis
Our system performs significantly better on question Type 2 - infer-
ence task (Table 1). For Type 1, the paths and entities must match
the ground truth in order. However, this leads to weaker perfor-
mance if any entity pairs’ relations don’t match the ground truth.
Since the Text model has soft-transfer learning on pre-trained BERT,
we extract a good dialog representation at scene level. For Type 1
questions, the fused model performs better, while the low recall is
attributed to information loss due to mismatched/non-identifiable
objects from face-object recognition. Imbalanced relationship cate-
gories in training data posed a key challenge leading to significant
bias. We evaluate the test set using the fused model only.

Type 1 questions were deemed hardest by the challenge authors.
Our model performs better on test set when the paths are evaluated
on relations grouped into five sets. For Shooters, the recall of 2.8% is
higher than the precision of 0.075% implying there are fewer false
negatives than false positives. We can reduce false positives across
movies by encoding features attribute like age, gender, etc. that will
help eliminate edges in the knowledge graph between two entities
that logically doesn’t apply. Low recall is also attributed to:

(1) We do not incorporate inverse relations, i.e. relations outside
of the primary sixty categories. The paths between Robin’s
father and Nicole in Let’s Bring Back Sophie contain multiple
inverse relations like Socialized At By.

(2) When an important entity is not recognized in the pipeline,
the body tracks for the kinetics model becomes sparse or

2The evaluation files on training set are hand-crafted by workers for training movies
to best capture performance, as opposed to recording vanilla model loss and accuracies

non-existent, and the model misses inferring their paths.
This is evident in Shooters where Mrs Milton should connect
edges in multiple paths from Isaac and Jaden.

(3) When two entities are not co-located or are tracked rarely,
our model either does not infer a relation between them or
does so with a lower confidence, leading to missed edges. For
example, most paths between Emil Oryx and Sasha in Time
Expired should contain Corinna Zimmerman, but is not co-
located with entities in the suggested path. One possible way
to reduce missed co-located entities is to increase the frame
threshold in our model and introduce more hyperparameters.

For Type 2 ranking questions, our model retrieves target entities
from the knowledge graph based on the properties of associated
edges for multiple queries. However, Type 2 suffers from the same
problems described for Type 1. For longer movies, it generates too
many sets of probabilities, one for each scene, that hinders entity-
pair distribution from converging optimally. This explains the MRR
scores for The Big Something and Time Expired.

In Type 3 questions, our model gets 100% accuracy for questions
resembling "How many children/siblings does A have?" across all
test movies. These comprises of 50% of the questions in Type 3,
therefore we get an accuracy of 50% or more across all movies.

8 CONCLUSION AND FUTUREWORK
We found that segmentation in storylines helped a lot, text-based
embeddings are relatively easy to adapt despite the scarcity of
training samples in our movie scenes, and audio-emotion embed-
dings were not effective in detecting critical moments in a movie.
Scene based kinetics were very effective in producing large training
samples for training and helping create a powerful model. We can
improve our character entity co-location pipeline by performing
object tracking on each character’s occurrence.

A future direction of research on semantic deduction could be
based on crisper speaker diarization to prevent garbled transcrip-
tion, inferring morphological segregation of multilingual conver-
sations [14] and reduce false positive speaker associations using
head-tracking as a better proxy for person-face mapping during
semantically-deduced sample creation, since freely occurring multi-
modal data rarely have faces oriented towards the recording device.
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